| (8 pages)                                                                         | Reg. No. :                                                       | ·            | 2.        | Choose the transcendental equation from the following —                                                                                                                                 |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code No. : 8                                                                      | 30741 E Sub. Code : F                                            | SMA 31       |           | (a) $x^3 - 1 = 0$ (b) $x^2 + x + 1 = 0$                                                                                                                                                 |
|                                                                                   | r .                                                              |              |           | (c) $x = 1$ (d) $e^x - 1 = 0$                                                                                                                                                           |
| B.Sc. (C                                                                          | BCS) DEGREE EXAMINATIO<br>NOVEMBER 2024.                         | Ν,           | 3.        | The order of convergence in Newton – Raphson method is ———                                                                                                                              |
|                                                                                   | Third Semester                                                   | Ĭ            |           | (a) 3 (b) 2 (c) 1 (d) 4                                                                                                                                                                 |
| Skill Enhance                                                                     | Mathematics<br>ement Course — COMPUTATI<br>MATHEMATICS           | ONAL .       | <b>4.</b> | Horner's method is to find  (a) Exact values of the roots of quadratic equation                                                                                                         |
| (For those who joined in July 2023 onwards)  Time: Three hours  Maximum: 75 marks |                                                                  |              |           | (b) Approximate values of the real roots of an equation                                                                                                                                 |
| Time : Three hou                                                                  |                                                                  | 75 marks     | 4 ,       | <ul><li>(c) Approximate values of complex roots</li><li>(d) The positive real roots of an equation</li></ul>                                                                            |
| Choose the                                                                        | Answer ALL questions.  correct answer:  Regula Falsi method, the | ne new       | 5.        | What is the system of simultaneous equation?  (a) single equation with multiple variable  (b) multiple equations with a single variable  (c) multiple equations with multiple variables |
| approxima                                                                         | tion $x_{n+1}$ is computed based on interpolation                |              | 6.        | <ul><li>(d) an equation involving complex numbers</li><li>The Gauss – Jordan method reduces a original</li></ul>                                                                        |
| (b) quadr                                                                         | ratic interpolation                                              | * , **<br>** | a -       | matrix into a ———————————————————————————————————                                                                                                                                       |
| V                                                                                 | interpolation<br>ential interpolation                            | \$ \$ \$     | -         | <ul><li>(b) Lower triangular matrix</li><li>(c) Diagonal matrix</li><li>(d) Upper triangular matrix</li></ul>                                                                           |
|                                                                                   | s <sub>1</sub> .                                                 |              |           | Page 2 Code No.: 30741 E                                                                                                                                                                |

- 7. Which method is said to be direct method
  - (a) Gauss Seidal method
  - (b) Gauss Jacobi method
  - (c) Gauss Jordan method
  - (d) All the above
- 8. Gauss Seidal iteration converges only if the coefficient matrix is
  - (a) upper triangular
  - (b) lower triangular
  - (c) diagonally dominant
  - (d) banded matrix
- 9. In solving the Laplace equation  $U_{xx} + U_{yy} = 0$ , the standard five point formula is

$$({\bf a}) \qquad U_{i,j} = \frac{1}{4} \Big[ U_{i+1,\,j+1} + U_{i+2,\,j-1} + U_{i-1,\,j+1} + U_{i-1,\,j+1} \Big]$$

(b) 
$$U_{i,j} = \frac{1}{4} \left[ U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} \right]$$

(c) 
$$U_{i,j} = \frac{1}{4} \Big[ U_{i,j+1} + U_{i,j-1} + U_{i-1,j-1} + U_{i-1,j+1} \Big]$$

$$\text{(d)} \hspace{0.5cm} U_{i,j} = \frac{1}{4} \Big[ U_{i+1,j+1} + U_{i+1,j-1} + U_{i-1,j+1} + U_{i-1,j-1} \Big]$$

Page 3 Code No.: 30741 E

- 10. The partial differential equation  $\frac{\partial^2 U}{\partial x^2} + 2 \frac{\partial^2 U}{\partial x \partial y} + 3 \frac{\partial^2 U}{\partial y^2} = 0 \text{ is}$ 
  - (a) Hyperbolic
  - (b) Elliptic
  - (c) Parabolic
  - (d) Rectangular hyperbola

PART B — 
$$(5 \times 5 = 25 \text{ marks})$$

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 250 words.

11. (a) Use the method of iteration to solve the equation  $3x - \log_{10} x = 6$ .

Or

- (b) Can we apply iteration method to find the root of the equation  $2x = \cos x + 3$  in  $\left[0, \frac{\pi}{2}\right]$ ?
- 12. (a) Explain the method of Bisection.

Or

(b) Find the real root of  $x^3 - 3x + 1 = 0$  lying between 1 and 2 upto three places of decimals by Newton Raphson method.

Page 4 Code No.: 30741 E [P.T.O.]

13. (a) Solve the following system of equations using Gauss elimination method : x + y + z = 9; 2x - 3y + 4z = 13; 3x + 4y + 5z = 40.

Or

- (b) Solve the following system of equations by Gauss Jordan method 5x-2y+3z=18, x+7y-3z=-22, 2x-y+6z=22.
- 14. (a) Solve 2x + y = 3; 2x + 3y = 5 by Gauss Seidel iteration method.

Oı

(b) Solve the following equations using relaxation method 5x - y - z = 3; -x + 10y - 2z = 7;

$$-x-y+10z=8.$$

15. (a) Classify the equation  $u_{xx} + 4u_{xy} + (x^2 + 4y^2)u_{yy} = \sin xy$ .

Or

(b) Solve the equation  $U_{xx} + U_{yy} = 0$  for the following square mesh with boundary values as shown below using Liebmann method.



Page 5 Code No. : 30741 E

PART C —  $(5 \times 8 = 40 \text{ marks})$ 

Answer ALL questions choosing either (a) or (b). Each answer should not exceed 600 words.

16. (a) Find the real root lying between 1 and 2 of the equation  $x^3 - 3x + 1 = 0$  upto 3 places of decimal by using Regula Falsi method.

-Or

- (b) Find the real root of the equation  $\cos x = 3x 1$  correct to four places of decimals using successive approximation method.
- 17. (a) Find the real root of  $xe^x 2 = 0$  correct to three places of decimals using Newton Raphson method.

Or

(b) Find the negative root of  $x^3 - x^2 + 12x + 24 = 0$  correct to two places of decimals by Horner's method.

Page 6 Code No.: 30741 E

18. (a) Find the inverse of the matrix by Gauss elimination  $A = \begin{pmatrix} 2 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{pmatrix}$ .

Oı

(b) Solve the following system of equations by Gauss Jordan method:

$$x + y + z = 9$$
;  $2x - 3y + 4z = 13$ ;  $3x + 4y + 5z = 40$ .

19. (a) Solve the following equations using Jacobi's iteration method. 28x + 4y - z = 32; x + 3y + 10z = 24; 2x + 17y + 4z = 35.

Or

(b) Solve the following system of equations using Gauss Seidal iteration method.

$$6x + 15y + 2z = 72$$
;  $x + y + 54z = 110$ ;  $27x + 6y - z = 85$ .

20. (a) Solve  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 8x^2y^2$  in the square mesh given u = 0 on the four boundaries dividing the square into 16 subsquares of length 1 unit.

Or Page 7 Code No. : 30741 E

- (b) By iteration method solve the elliptic equation  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$  over the square region of side 4 satisfying the boundary conditions.
  - (i) u(0, y) = 0 for  $0 \le y \le 4$
  - (ii) u(4, y) = 12 + y for  $0 \le y \le 4$
  - (iii)  $u(x,0) = 3x \text{ for } 0 \le x \le 4$
  - (iv)  $u(x, 4) = x^2 \text{ for } 0 \le x \le 4.$

Page 8 Code No. : 30741 E